
  

  

Abstract—6 minute walk test (6MWT) is a practical test 
performed in clinic to assess exercise capacity of elderly 
subjects. This paper aims at providing an instrumented 6MWT 
(i6MWT) and methods for extracting gait variability metrics in 
order to characterize walking alteration with age. A new system 
based on foot-worn sensors and dedicated algorithms providing 
temporal and spatial parameters in 3 dimensions are proposed 
to study various aspects of gait variability. Measurements 
involved 10 young and 10 elderly subjects performing a i6MWT 
in a 25m-long corridor. Methods for removing walking breaks 
and turning outliers based on the estimation of standard 
deviation of gait cycle time or turning angle are proposed. 
Stride-to stride and long-term variability were also introduced 
and estimated for stride length, stride velocity, foot clearance 
and gait cycle time obtained by foot-worn sensors. The extent to 
which the proposed system can discriminate young and elderly 
subjects is discussed. The method appears particularly suitable 
for in-field clinical evaluation of rehabilitation treatment or 
intervention in elderly subjects. 

I. INTRODUCTION 
he 6 minutes walk test (6MWT) is a reliable and 
practical clinical test to assess the exercise capacity of 

elderly persons [1]. This test measures the distance (6MWD) 
that a person can quickly walk on a flat, hard surface in a 
period of 6 minutes. It evaluates the global performance of 
the subject during exercises but does not provide specific 
information on the locomotion and its potential limitation 
such as its variability over walking distance. Actually, gait 
variability measures have been shown recently to be 
particularly relevant for the evaluation of gait in elderly for 
predicting falls and/or age-related changes leading to frailty 
[2].   

In practice, analyzing the intrinsic variability of gait 
requires adequate straight walking distance, typically more 
than 200m [3], to obtain information on a stride-to-stride 
basis without measuring variability due to extrinsic factors 
such as turning or gait initiation. Generally, long-distance 
spatio-temporal gait analysis requires large working space, 
which cannot be obtained with standard laboratory systems 
such as optical motion capture. Treadmill could be 
considered as an alternative, but some subjects and 
particularly elderly individuals are unfamiliar to walking on 
a treadmill, which might lead to alter their gait pattern and 
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the observed variability. Clinics also rarely have access to 
straight corridor without obstacles for more than 200m 
needed for the study of gait variability.  

On the other hand, ambulatory devices have overcome 
some of these limitations by allowing to estimating gait 
variability using in shoes footswitches [4], but these studies 
were limited to temporal gait parameters only. More 
recently, system based on inertial body-worn sensors have 
proven the possibility to measure both temporal and spatial 
aspects of gait in long-distance walking by analyzing gait 
kinematics outside the laboratory environment (in field). 
However, systems based on Micro-Electro-Mechanical 
Systems (MEMS) gyroscopes and accelerometers suffer 
from measurement errors and integration drifts, which make 
difficult the assessment of velocity, position and orientation 
during long-term measurements. Therefore, recorded data 
require dedicated algorithms to compute relevant parameters 
for clinical use [5]. Estimation of 2D spatio-temporal 
parameters of gait using a double-pendulum model with 
sensors on lower limbs has been proposed and used in 
different populations to estimate spatio-temporal gait 
parameters and their variability [6]. 3D method was 
proposed also to find the foot orientation during gait with 
drift resetting at each step [7]. Such approach used a 
quaternion-based estimation of foot orientation and position 
where the drift was corrected periodically by assuming null 
velocity during foot-flat period at each gait stance. However, 
those approaches were only applied in condition of straight 
walking or during short distances.  

In the present study, we assume that a 6MWT performed 
in a 25m-corridor with foot-worn sensors can be used to 
evaluate the mechanism of gait limitation in elderly. Based 
on gait parameters derived from a 3D foot kinematic 
estimation approach, and validated against a gold standard 
[8], the objective of this study was to design an instrumented 
6MWT (i6MWT) to characterize walking alteration with age. 
First, appropriate outlier removal methods were proposed to 
aggregate straight walking periods of 6MWT. Then we 
provide estimators to assess the variability of spatio-temporal 
gait parameters in young and elderly subjects during the 
aggregated walking period.  

II. METHOD 

A. Foot-Worn Sensors 
A wireless 6 Dimensional-Inertial Measurement Unit (6D-

IMU) referred as “S-Sense” has been used [9]. In this study

An Instrumented 6 Minutes Walk Test: Assessment of 3D gait 
variability for outcome evaluation in elderly population 

B. Mariani, A. Paraschiv-Ionescu, and K. Aminian, Member, IEEE 

T

ICABB-2010, Venice, Italy
October 14-16, 2010



 two S-Sense modules were fixed on shoes using double-
sided Velcro patches (Fig.1). Raw sensor data was wirelessly 
transmitted in real time to a PC using “S-Base” receiver 
plugged in USB. Signals from the two S-Senses were 
synchronized by considering the absolute real time clock sent 
by the base station to each module at the start of recording. 
Data from the two feet were converted to physical units (g or 
°/s) using in-field calibration method [10]. 

B. Measurement Protocol 
Ten young healthy volunteers (age 26.1±2.8 years), 

referred as “Young” group, and ten fit elderly volunteers 
(age 71.6±4.6 years), referred as “Elderly” group, took part 
in the study. Measurements were scheduled over 2 weeks 
and the ethical committee of the University of Lausanne 
approved protocol. Each subject wearing S-Sense modules 
on shoes performed a 6-Minute Walk Test [1]. The 6MWT 
was performed indoors, along a long, flat, straight, enclosed 
corridor, with a hard surface that is seldom traveled. The 
walking course was 25m. The turnaround points were 
marked with a cone (Fig.2). 

C. Gait Parameters 
3D foot kinematics was assessed from the inertial signals 

by using a dedicated 3D gait analysis algorithm [8]. Five gait 
parameters were then extracted at each cycle n: 
• Stride length (SL) was defined as the distance measured 

between two successive foot-flat positions of the foot. 
This calculation is valid for curved and turning path as 
well [11]. 

• Foot clearance (FC) was defined as the maximal foot 
height during swing phase relative to the height at foot-
flat. 

• Stride velocity (SV) was considered as the mean value of 
foot velocity in forward direction during gait cycle. 

• Turning Angle (TA) was defined as the relative change 
in foot heading (or azimuth), between the beginning and 
the end of gait cycle.  

• Gait Cycle Time (GCT) was defined as the time between 
two successive heel-strike events. 

D. Detection of outliers and pre-processing of data for 
variability analysis 

For the analysis of gait variability, we focused on the 
assessment of the ‘intrinsic dynamics’ of continuous and 

 
Fig. 2.  6 Minute Walk Test protocol, including turns at the end of the 
pathway, and straight walking during 25m. 
 
straight walking. Therefore we had to ensure that the analysis 
was not influenced by those atypical strides outliers i.e. 
walking breaks and turning periods. 

In the following we present two methods for detection and 
correction of outliers in gait parameters time series. 

1) Method 1: statistical approach based on ‘two-sigma 
rule’ 

In order to minimize the start-up/end-up effects in the gait 
acquisition, the samples recorded in the first and the last five 
20s were removed before variability analysis. Then gait 
parameters corresponding to each cycle were detected and 
their median and standard deviation (STD) were estimated. 
During the 6MWT, the instant where the subjects stopped to 
walk or start turning by reaching the end of the 25-meter 
pathway were detected according to the ‘two-sigma rule’ 
similar to [12]. According to this rule about 95% of the 
normally distributed data lie within 2-STD. In the present 
study, for each gait parameter time series (i.e. SL, FC, SV, 
TA, GCT) we detected outliers, which were distributed 
outside of median±2STD. These outliers were replaced with 
the median value of gait parameter time series. The median 
value was considered rather than the mean because it was 
observed that some outliers had very large values, and might 
affect the mean value of the entire time series. 

2) Method 2: outlier removal based on turn signal 
information combined with Method 1 

This technique is an improvement of Method 1 consisting of 
the following steps: 
- Detect the gait cycles parameters during turning by 

applying an empirical threshold on Turning Angle values, 
- Remove the gait cycles parameters during turning, 
- Apply Method 1 to the new gait parameter time series in 

order to remove outlier related to other origins such as 
walking breaks. 

E. Gait Variability Analysis 
Gait variability was quantified by standard statistics based 

on mean and standard deviation of gait parameters. This 
variability expresses the stride-to-stride fluctuations in 
walking. Moreover in order to consider the dynamic of gait 
variability and its long-term fluctuations, non-linear metrics 
were considered as well. 

1) Stride to stride fluctuations 
Based on statistics defined in Table 1, the following 

variability metrics were estimated during the continuous and 
straight walking of 6MWT. 
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Fig. 1.  Foot-worn sensors module (S-Sense) with compliant foam 
attached to shoe.



  

• Coefficient of variation (CV):   

 

• Burstiness parameter (B) [13]:   

 
 

• Median Absolute Deviation (MAD):   

 
 

• Standard deviation of the first derivative gait/stride 
time series (σd)   

 
• Interquartile range of the second derivative gait/stride 

time series (iqr1) 
 

• Signal Permutation Counts (SPC) [14]. In a given time 
series (e.g. s(n), n=1,L), a data sample can be identified as a 
‘signal permutation’ (SP) if it satisfies simultaneously the 
following two criteria: 1) the absolute value of difference 
between its amplitude and that of the preceding sample 
should be greater that a specific threshold and 2) it represents 
an alteration in direction in the signal, i.e., a change in the 
sign of the derivative. Practically, the detection of a SP is 
expressed as: 

 
The number of signal permutations (SPC) in a time series 

represents the degree of signal variability. 

2) Long-term fluctuations 
The stride-to-stride parameters are not sensitive to changes 

in the ordering of the stride times or the dynamics. 
Randomly reordering a time series will not affect the 
magnitude of the variability but may dramatically alter the 
dynamic properties. During 6MWT, there can be long-term 
(i.e. in the order of the minute) fluctuations of gait 
parameters, that are not directly measured by previously 
describe variability estimators. To quantify how the 
dynamics fluctuate over time during the walk, fractal 
analysis and symbolic entropy measures are applied to the 
stride time series. 

• Fractal scaling exponent (α) 
The de-trended fluctuation analysis (DFA) method can 

quantify the complex temporal organization of the 
fluctuations in a given time series by a single scaling 
exponent (α). α is a self-similarity parameter that represents 
the long-range power-law correlation properties of the signal 
[15]. A time series with complex fractal-like behaviour has a 
DFA scaling exponent α=1 (1/f noise). When it becomes 
more random, the scaling exponent decreases to a minimum 
of α=0.5 for an entirely random series (white noise). On the 
other hand, a scaling exponent α=1.5 characterize a smoother 
time series (Brownian noise) which reflect only trivial 
complexity [16].    

• Symbolic entropy (SEn) 
Another approach to illustrate the dynamic of gait 

variability is to quantify the ‘complexity’ of the gait pattern 
using methods derived from symbolic dynamics and 
information theory. 

Symbolic time-series analysis [17] involves the 
transformation of the original time series into symbol 
sequences that can be valuable to extract useful information 
about the state of the (physiological) system generating the 
process. Data symbolization is the first step in symbolic time 
series analysis and involves the conversion of a data series of 
many possible values into a symbol series of few distinct 
values (e.g., binary sequences of 0 and 1). After 
symbolization, the next step is the construction of words 
from the symbol series by collecting groups of symbols 
together in temporal order. This process typically involves 
definition of a finite word-length template that can be moved 
along the symbol series one step at a time, each step 
revealing a new sequence. Quantitative measures of 
symbolic series include statistics of words (word frequency, 
transition probabilities between words) and information 
theoretic based entropy measures such as approximate 
entropy, multi-scale entropy, Shannon & Renyi entropy [18]. 

Finally, qualitative observations of long-term fluctuations 
profiles are made by interpolating the series of gait 
parameters using cubic-functions. 

III. RESULTS 

A. Outliers Removal  
Fig. 3 illustrates gait parameters time series extracted 

during a typical 6MWT from an elderly subject. It can be 
observed that the values of all gait parameters were 
significantly different (p-values<0.05) during the turning at 
the end of 25m walking path [8], which justify the relevance 
of the proposed outlier removal approach. 

The analysis of the 20 dataset showed that Method 1 is 
efficient only if outliers have similar (normally distributed) 
amplitude. When outliers have various amplitudes (heavy 
distribution) due to many different sources, for example, 
turning at different degrees, loss of data samples during 
acquisition, walking breaks the statistical ’two-sigma rule’ is 
not efficient as shown in the illustrative examples in Fig. 4.  
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TABLE  I 
NOTATIONS 

Symbol Quantity 

s(n) 
gait parameter time series (can be Foot clearance, Stride 
Length, Stride Velocity, Gait Cycle Time), were n 
corresponds to gait cycle 

ms mean of s 

σs
2 variance of s 

σs standard deviation of s 

σd standard deviation of the first derivative of s 
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Fig. 3.  Typical series of gait parameters extracted during 6 Minute Walk 
Test from an Elderly Subject. 

Fig. 4.  Detection and correction of outliers in gait cycle time series:  typical 
example when turning angle and outliers in gait cycle time series have a 
heavy amplitude distribution (a,b) and correction performance obtained with 
Method 1(c)  and Method 2 (d).

 
As it can be observed on Figs. 3 and 4, an absolute 

threshold value of 10 to 15° qualitatively allow a good 
discrimination of the turning and straight walking gait 
cycles. Therefore, the efficiency of Method 2, which 
combines the information from the turn signal with the 
statistical approach, is illustrated in Fig. 4. 

 

B. Gait Variability in Young and Elderly subjects 
Stride-to-stride variability 
The data series (after outlier removal) corresponding to 

each of the extracted gait parameters, namely SL, SV, FC 
and GCT were considered for analysis in Young and Elderly 

group of subject. Comparative analyses were conducted by 
considering gait data from Physionet [19] as a reference with 
Healthy young controls (n=15) and Healthy Elderly (n=5, 
age 74±2). Results are presented in Table II, and indicate that 
stride-to-stride variability of different gait parameters 
increases with aging. 

 

 
Fig. 5. Long-term trend obtained by cubic interpolation of Stride Velocity 
series that is not measure by classical linear variability such as STD. 
 

Long-term variability
The results of long-term variability analysis quantified by 

the symbolic entropy SEn and the fractal scaling exponent α 
are shown in Table II. The estimated values indicated a 
decrease of long-term variability of gait parameters with 
aging. In addition, to stride-stride variability and long-term 
variability, the speed profile in particular can illustrate 
interesting long-term trend. See for example fig 5, where 
maximum stride velocity is observed after 250 seconds from 
the beginning of the test. 
 

TABLE II 
TEMPORAL AND 3D SPATIAL GAIT VARIABILITY  

Y: Young group, E : Elderly group 

IV. DISCUSSION 
In this study, we have considered a familiar and well-

established test of mobility, i.e. 6MWT, and technically 
evolved it to “i6MWT”. One of the major contributions of 
this work was to provide a method for extracting gait cycles 
parameters and their variability with automatic exclusion of 
non-relevant gait cycles due to artifacts such as walking 
breaks, loss of data and turning periods. With our 25m-based 

 
  GCT 

(Physionet) GCT SV SL FC 

Y 2.33±0.53 2.6±0.97 5.1±1.7 4±1.4 4±0.9 CV E 2.45±1.22 3±0.9 7±2.8 5.7±2.6 4.4±1.9 
Y -0.94 ±0.01 -0.94±0.02 -0.89±0.03 -0.92±0.02 -0.9±0.02 B E -0.94±0.02 -0.9±0.01 -0.81±0.18 -0.89±0.05 -0.9±0.03 
Y 0.015±0.005 0.015±0.012 0.04±0.02 0.022±0.02 0.007±0.002 MAD E 0.014±0.005 0.02±0.004 0.074±0.08 0.043±0.022 0.008±0.002 
Y 0.028±0.007 0.03±0.01 0.077±0.03 0.066±0.02 0.013±0.002 σd E 0.03±0.02 0.04±0.01 0.09±0.04 0.09±0.05 0.014±0.004 
Y 0.036±0.009 0.038±0.021 0.089±0.057 0.06±0.04 0.017±0.003 iqr1 E 0.03±0.01 0.044±0.013 0.1±0.07 0.11±0.07 0.0168±0.005 
Y 5±5.8 14±9 9±10 2±2 1±2 SPC E 16±29 20±10 15±21 10±21 3±6 
Y 1.8±0.2 1.74±0.34 0.92±0.28 1.25±0.47 1.24±0.5 SEn E 1.7±0.4 1.5±0.4 0.8±0.4 0.9±0.4 1.05±0.47 
Y 1.00±0.15 0.9±0.1    α E 0.83±0.11 0.82±0.13 - - - 



  

test, mean amount of data classified as outliers was 
approximately 15% for the entire datasets. So the remaining 
information should be long enough for correct variability 
estimations [3]. In practice, that makes the i6MWT an easy 
and convenient test to perform with elderly subjects in the 
framework of routine clinical tests. 

Based on this test, which can measure up to several 
hundreds of walking steps, gait variability was assessed by 
wearable IMU sensors attached on shoes. We provided two 
types of gait variability metrics, those expressing the stride-
to-stride regularity of walking and those reflecting the non-
linear behavior of gait variability, also referred as 
“complexity” of walking.  

Stride-to-stride variability is always present in walking, 
allowing a certain adaptability to external perturbations (e.g. 
change in direction and speed, obstacle avoidance). 
However, when this variability is too high, it has been shown 
to be associated with impaired motor function. As such, we 
expected higher stride-to-stride variability with age and that 
was confirmed in this study by higher stride-to-stride 
variability in elderly subjects compared to healthy young 
subjects (i.e. higher CV, MAD, σd, iqr1, SPC and B). 

When considering walking as a dynamic biological 
system, higher dynamic range and complex variability enable 
the organism to rapidly respond to internal and external 
perturbation. The non-linear gait variability metrics (i.e. SEn 
and α) in this study corroborated this aspect as we found that 
those metrics tend to decrease with age, implying a less 
complex and frailer behavior. This is in agreement with a 
well-known loss of complexity with aging. 

The ranges of gait variability obtained in this study are in 
agreement with other preliminary existing data. However, we 
have also proposed gait variability measures in some new 
spatial parameters (i.e. SV, SL and FC). 

A major limitation of this study was the small sample size 
of population, which did not allow statistical comparisons. 
Other investigations are in progress with a larger elderly 
population in order to estimate the performance of the 
proposed variability metrics in the assessment of 
rehabilitation and training intervention efficiency. Notably, 
intervention with a motorized shoes generating non-linear 
stimulation (SMILING shoes) aiming at improving gait and 
balance through neuro-motor rehabilitation will be consider. 

The potential applications of i6MWT are not just limited 
to elderly subjects. Gait variability measured by i6MWT 
could be relevant for assessment of Parkinson disease, 
orthopedics impairment and some other pathology associated 
with gait impairment. 
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